SSR 2024 Rising Stars #1

Speaker: Dr. Katy Patras, Baylor College of Medicine, USA

Title: Gestational diabetes disrupts maternal immunity and the vaginal microbiota to promote bacterial infection.

Description: Group B Streptococcus (GBS) is a pervasive perinatal pathogen, and gestational diabetes mellitus (GDM) increases the risk of GBS perinatal disease although the underlying mechanisms are unknown. Using a novel murine GDM model of GBS colonization, we found that GDM mice had greater GBS dissemination and worse neonatal outcomes. GDM altered host responses, including reduced uterine natural killer cell activation and recruitment, and distinct vaginal microbial taxa were associated with GDM status and GBS invasive disease status. Our translational model of GBS perinatal transmission in GDM hosts recapitulates several clinical aspects and enables discovery of host and bacterial drivers of GBS perinatal disease.

Speaker: Dr. Daniel Mathew, University of Tennessee, USA

Title: The In Vitro Produced Conceptus: What the Endometrium Can Tell Us

Description: The early conceptus creates a microenvironment with the surrounding endometrium, supporting pre-implantation development. During this webinar I’ll discuss how the in vitro produced cow conceptus impacts the endometrial transcriptome and surrounding proteome compared to the in vivo derived conceptus and how that may influence establishment of pregnancy.

Placental strategies supporting fetal growth during normal and suboptimal gestational environments

The placenta is essential for mammalian development and a key determinant of life-long offspring health. It is responsible for transporting all the nutrients and oxygen a fetus needs to develop and grow and secretes hormones that adapt maternal physiology to support the pregnancy. However, the placenta is not a static organ. In this talk I will present our work undertaken in experimental models showing that placental formation and function adapts developmentally to the needs of the growing fetus during normal gestation, as well as in response to suboptimal gestational environments, namely obesity and hypoxia. Impairments in placental formation and function have consequences for fetal growth and birthweight, which in turn, dictate perinatal survival and risk of non-communicable diseases in later postnatal life. Thus, identifying how the placenta responds and adapts to developmental and environmental cues may be informative for the design of strategies to optimise pregnancy and long-term health outcomes.

Storing Sugar in the Uterus: Glycogen Metabolism during Early Pregnancy

The endometrium needs to regulate glucose availability precisely; too much or too little impairs decidualization and embryo development. We have shown that the epithelium and decidua store distinct pools of glucose as glycogen during early pregnancy. Thus, glycogen may represent a vital way to buffer glucose concentrations before and during implantation.

Illuminating the (uterine) path: from embryo movement to implantation

Although much is known about the molecular signaling during implantation, the uterine 3D architecture that facilitates embryo development remains unknown. Imaging the mouse embryo and the uterine milieu simultaneously we uncovered patterns of embryo movement and dynamic shape changes in the uterine lumen and glands in preparation for implantation. When applied to mouse mutants with known implantation defects, this method detected striking peri-implantation abnormalities in uterine morphology that cannot be visualized by histology. Analyzing the uterine and embryo structure in 3D for genetic mutants, hormonal perturbations and pregnancies treated with pathway inhibitors is helping us uncover novel molecular pathways and global structural changes that contribute to successful implantation of an embryo. Our studies have implications for understanding how structure-based embryo-uterine communication is key to determining an optimal implantation site, which is necessary for the success of a pregnancy.

Kisspeptin neurons and the circuits that control ovulation

In females, the mid-cycle surge in gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion triggers ovulation. This neuroendocrine process is mediated by a population of neurons in the preoptic area that produce the neuropeptide kisspeptin and drive the activity of GnRH neurons for the surge. In female rodents, and possibly in other species, the preovulatory surge is timed to precede the onset of activity to ensure that ovulation coincides with sexual behavior. In this presentation, I will focus on the regulation of preoptic area kisspeptin neuron activity by the central circadian clock.

A Small Follicle Tells a Big Story

Dr. Shuo Xiao, assistant professor in the Department of Pharmacology and Toxicology at Rutgers University and a principal investigator in the Environmental and Occupational Health Sciences Institute (EOHSI) at Rutgers, will discuss his lab’s utilization of a unique 3D in-vitro ovarian follicle culture system that phenotypically and mechanistically recapitulates in-vivo ovarian functions. This exciting model serves as a powerful new tool to study ovarian biology, reproductive toxicology, and fertility preservation.

Deciphering The Ovarian Microenvironment Across Developmental, Spatial, And Temporal Axes

Premature ovarian insufficiency (POI), or the early cessation of ovarian function, can be caused by a disease or by the iatrogenic effects of a chemotherapy or radiation treatment. Restoration of ovarian function through a tissue engineered transplant intends to restore fertility and ovarian hormones and alleviate co-morbidities of POI, such as those that affect the cardiovascular, brain and bone health. We will describe or ongoing research to decipher the ovarian microenvironment across developmental, spatial, and temporal axes. We aim to understand the role of biochemical and physical cues on folliculogenesis to better inform the ideal microenvironment and future regenerative therapies.

Back to top